Periodic solutions of integro-differential equations in vector-valued function spaces

Keyantuo V.; Lizama C.; Poblete V.

Abstract

Operator-valued Fourier multipliers are used to study well-posedness of integro-differential equations in Banach spaces. Both strong and mild periodic solutions are considered. Strong well-posedness corresponds to maximal regularity which has proved very efficient in the handling of nonlinear problems. We are concerned with a large array of vector-valued function spaces: Lebesgue-Bochner spaces Lp, the Besov spaces Bp, q s (and related spaces such as the Hölder-Zygmund spaces Cs) and the Triebel-Lizorkin spaces Fp, q s. We note that the multiplier results in these last two scales of spaces involve only boundedness conditions on the resolvents and are therefore applicable to arbitrary Banach spaces. The results are applied to various classes of nonlinear integral and integro-differential equations. © 2008 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Periodic solutions of integro-differential equations in vector-valued function spaces
Título según SCOPUS: Periodic solutions of integro-differential equations in vector-valued function spaces
Título de la Revista: JOURNAL OF DIFFERENTIAL EQUATIONS
Volumen: 246
Número: 3
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2009
Página de inicio: 1007
Página final: 1037
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022039608003987
DOI:

10.1016/j.jde.2008.09.007

Notas: ISI, SCOPUS