Lovelock black holes with a nonlinear Maxwell field
Abstract
We derive electrically charged black hole solutions of the Einstein-Gauss-Bonnet equations with a nonlinear electrodynamics source in n>=5 dimensions. The spacetimes are given as a warped product M^2×K^(n-2), where Kn-2 is a (n-2)-dimensional constant curvature space. We establish a generalized Birkhoff's theorem by showing that it is the unique electrically charged solution with this isometry and for which the orbit of the warp factor on K^(n-2) is non-null. An extension of the analysis for full Lovelock gravity is also achieved with a particular attention to the Chern-Simons case. © 2009 The American Physical Society.
Más información
| Título según WOS: | Lovelock black holes with a nonlinear Maxwell field |
| Título según SCOPUS: | Lovelock black holes with a nonlinear Maxwell field |
| Título de la Revista: | Physical Review D |
| Volumen: | 79 |
| Número: | 4 |
| Editorial: | American Physical Society |
| Fecha de publicación: | 2009 |
| Página de inicio: | 044012-1 |
| Página final: | 044012-9 |
| Idioma: | English |
| URL: | http://link.aps.org/doi/10.1103/PhysRevD.79.044012 |
| DOI: |
10.1103/PhysRevD.79.044012 |
| Notas: | ISI, SCOPUS |