Kac-Moody symmetry in the light front of gauge theories

Gonzalez, Hernan A.; Labrin, Oriana; Miskovic, Olivera

Abstract

We discuss the emergence of a new symmetry generator in a Hamiltonian realisation of four-dimensional gauge theories in the flat space foliated by retarded (advanced) time. It generates an asymptotic symmetry that acts on the asymptotic fields in a way different from the usual large gauge transformations. The improved canonical generators, corresponding to gauge and asymptotic symmetries, form a classical Kac-Moody charge algebra with a non-trivial central extension. In particular, we describe the case of electromagnetism, where the charge algebra is the U(1) current algebra with a level proportional to the coupling constant of the theory, & kappa; = 4 & pi;(2)/e(2). We construct bilinear generators yielding Virasoro algebras on the null boundary. We also provide a non-Abelian generalization of the previous symmetries by analysing the evolution of Yang-Mills theory in Bondi coordinates.

Más información

Título según WOS: Kac-Moody symmetry in the light front of gauge theories
Título de la Revista: JOURNAL OF HIGH ENERGY PHYSICS
Número: 6
Editorial: Springer Verlag
Fecha de publicación: 2023
DOI:

10.1007/JHEP06(2023)165

Notas: ISI