Exponential stability of a flexible structure with history and thermal effect
Abstract
In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.
Más información
Título según WOS: | Exponential stability of a flexible structure with history and thermal effect |
Título según SCOPUS: | ID SCOPUS_ID:85089280820 Not found in local SCOPUS DB |
Título de la Revista: | Applications of Mathematics |
Volumen: | 65 |
Editorial: | ACAD SCIENCES CZECH REPUBLIC, INST MATHEMATICS |
Fecha de publicación: | 2020 |
Página de inicio: | 407 |
Página final: | 420 |
DOI: |
10.21136/AM.2020.0117-19 |
Notas: | ISI, SCOPUS |