Almost Automorphic Solutions of Difference Equations
Abstract
We study discrete almost automorphic functions (sequences) defined on the set of integers with values in a Banach space X. Given a bounded linear operator T defined on X and a discrete almost automorphic function f(n), we give criteria for the existence of discrete almost automorphic solutions of the linear difference equation ? u(n) = Tu(n) + f(n). We also prove the existence of a discrete almost automorphic solution of the nonlinear difference equation ? u(n) = Tu(n) + g(n, u(n)) assuming that g(n, x) is discrete almost automorphic in n for each x ? X, satisfies a global Lipschitz type condition, and takes values on X.
Más información
Título según WOS: | Almost Automorphic Solutions of Difference Equations |
Título según SCOPUS: | Almost automorphic solutions of difference equations |
Título de la Revista: | Advances in Difference Equations |
Volumen: | 2009 |
Editorial: | SPRINGER INTERNATIONAL PUBLISHING AG |
Fecha de publicación: | 2009 |
Idioma: | English |
URL: | http://www.advancesindifferenceequations.com/content/2009/1/591380 |
DOI: |
10.1155/2009/591380 |
Notas: | ISI, SCOPUS |