Photoluminescence modification of europium(iii)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles

Valenzuela-Fernandez, Rodrigo A.; Maine, Arianne; Cardin, Julien; Portier, Xavier; Labbe, Christophe; Pinto, Cristobal; Melo, Francisco; PIZARRO-URZUA, NANCY ALEJANDRA; Vargas, Victor; Segura, Camilo; GALDAMEZ-SILVA, ANTONIO CESAR

Abstract

In recent years, there has been an increasing interest in developing new inorganic compounds with exceptional properties for advanced materials. Specifically, compounds containing europium have attracted much attention due to their luminescent properties. These compounds are used in electronics, biotechnology, medicine, and catalysis. Eu is known for its characteristic red emission, which can be influenced by the environment. This study investigates the surface-enhancement luminescence of europium-doped spinel oxides using modified surface with silver (Ag@SiO2 core-shell) nanoparticles as the enhancers. The europium-doped spinels were synthesized through a sol-gel method, and characterization techniques were used to analyze their structure and morphology. Photoluminescence spectra exhibited characteristic Eu3+ transitions, with the hypersensitive transition being the most prominent. The interaction with an Ag@SiO2 modified-surface led to a significant increase in photoluminescence. The study also analyzed the photoluminescence excitation and lifetimes of the oxides, leading to a 7.3-fold increase in photoluminescence. The improvements observed in the luminescence of these tailor-made materials show their potential interest in next-generation technologies.

Más información

Título según WOS: Photoluminescence modification of europium(III)-doped MAl2O4 (M = Zn, Mg) spinels induced by Ag@SiO2 core-shell nanoparticles
Título según SCOPUS: ID SCOPUS_ID:85197920325 Not found in local SCOPUS DB
Título de la Revista: Nanoscale
Volumen: 16
Editorial: ROYAL SOC CHEMISTRY
Fecha de publicación: 2024
Página de inicio: 13161
Página final: 13170
DOI:

10.1039/D4NR01526F

Notas: ISI, SCOPUS