Electrically-Conductive Polyketone Nanocomposites Based on Reduced Graphene Oxide
Abstract
In this work, we investigated the functionalization of polyketone 30 (PK30) with glycyl-glycine (Gly-Gly) via the Paal-Knorr reaction with the aim of homogenously dispersing two types of reduced graphene oxide (rGO, i.e., lrGO and hrGO, the former characterized by a lower degree of reduction in comparison to the latter) by non-covalent interactions. The functional PK30-Gly-Gly polymer was effective in preparing composites with homogeneously distributed rGO characterized by an effective percolation threshold at 5 wt. %. All the composites showed a typical semiconductive behavior and stable electrical response after several heating/cooling cycles from 30 to 115 degrees C. Composites made by hrGO displayed the same resistive behaviour even if flanked by a considerable improvement on conductivity, in agreement with the more reduced rGO content. Interestingly, no permanent percolative network was shown by the composite with 4 wt. % of lrGO at temperatures higher than 45 degrees C. This material can be used as an ON-OFF temperature sensor and could find interesting applications as sensing material in soft robotics applications.
Más información
Título según WOS: | ID WOS:000535587700193 Not found in local WOS DB |
Título de la Revista: | POLYMERS |
Volumen: | 12 |
Número: | 4 |
Editorial: | MDPI |
Fecha de publicación: | 2020 |
DOI: |
10.3390/polym12040923 |
Notas: | ISI |