Scaling limits of bisexual Galton-Watson processes
Abstract
Bisexual GaltonWatson processes are discrete Markov chains where reproduction events are due to mating of males and females. Owing to this interaction, the standard branching property of GaltonWatson processes is lost. We prove tightness for conveniently rescaled bisexual GaltonWatson processes, based on recent techniques developed in [V. Bansaye, M.E. Caballero, and S. Méléard, Scaling limits of population and evolution processes in random environment, Electron. J. Probab. 24(19) (2019), pp. 138]. We also identify the possible limits of these rescaled processes as solutions of a stochastic system, coupling two equations through singular coefficients in Poisson terms added to square roots as coefficients of Brownian motions. Under some additional integrability assumptions, pathwise uniqueness of this limiting system of stochastic differential equations and convergence of the rescaled processes are obtained. Two examples corresponding to mutual fidelity are considered. © 2023 Informa UK Limited, trading as Taylor & Francis Group.
Más información
| Título según WOS: | Scaling limits of bisexual Galton-Watson processes |
| Título según SCOPUS: | Scaling limits of bisexual GaltonWatson processes |
| Título de la Revista: | Stochastics |
| Volumen: | 95 |
| Número: | 5 |
| Editorial: | Taylor and Francis Ltd. |
| Fecha de publicación: | 2023 |
| Página de inicio: | 749 |
| Página final: | 784 |
| Idioma: | English |
| DOI: |
10.1080/17442508.2022.2123706 |
| Notas: | ISI, SCOPUS |