The skew-t censored regression model: parameter estimation via an EM-type algorithm

Lachos, Victor H.; Bazan, Jorge L.; Castro, Luis M.; Park, Jiwon

Abstract

The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.

Más información

Título según WOS: The skew-t censored regression model: parameter estimation via an EM-type algorithm
Título de la Revista: COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS
Volumen: 29
Número: 3
Editorial: KOREAN STATISTICAL SOC
Fecha de publicación: 2022
Página de inicio: 333
Página final: 351
DOI:

10.29220/CSAM.2022.29.3.333

Notas: ISI