Sensitivity analysis and choosing between alternative polytomous IRT models using Bayesian model comparison criteria

da Silva, Marcelo A.; Bazan, Jorge L.; Huggins-Manley, Anne Corinne

Abstract

Polytomous Item Response Theory (IRT) models are used by specialists to score assessments and questionnaires that have items with multiple response categories. In this article, we study the performance of five model comparison criteria for comparing fit of the graded response and generalized partial credit models using the same dataset when the choice between the two is unclear. Simulation study is conducted to analyze the sensitivity of priors and compare the performance of the criteria using the No-U-Turn Sampler algorithm, under a Bayesian approach. The results were used to select a model for an application in mental health data.

Más información

Título según WOS: ID WOS:000462854800021 Not found in local WOS DB
Título de la Revista: COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION
Volumen: 48
Número: 2
Editorial: TAYLOR & FRANCIS INC
Fecha de publicación: 2019
Página de inicio: 601
Página final: 620
DOI:

10.1080/03610918.2017.1390126

Notas: ISI