A conforming mixed finite-element method for the coupling of fluid flow with porous media flow
Abstract
We consider a porous medium entirely enclosed within a fluid region and present a well-posed conforming mixed finite-element method for the corresponding coupled problem. The interface conditions refer to mass conservation, balance of normal forces and the Beavers-Joseph-Saffman law, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The finite-element subspaces defining the discrete formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures and continuous piecewise-linear elements for the Lagrange multiplier. We show stability, convergence and a priori error estimates for the associated Galerkin scheme. Finally, we provide several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence.
Más información
Título según WOS: | A conforming mixed finite-element method for the coupling of fluid flow with porous media flow |
Título según SCOPUS: | A conforming mixed finite-element method for the coupling of fluid flow with porous media flow |
Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS |
Volumen: | 29 |
Número: | 1 |
Editorial: | OXFORD UNIV PRESS |
Fecha de publicación: | 2009 |
Página de inicio: | 86 |
Página final: | 108 |
Idioma: | English |
URL: | http://imanum.oxfordjournals.org/cgi/doi/10.1093/imanum/drm049 |
DOI: |
10.1093/imanum/drm049 |
Notas: | ISI, SCOPUS |