Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry
Abstract
The aim of this paper is to analyse a mixed finite-element method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displacements, rotations and shear stresses of the vibration modes, as well as a double order of convergence for the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the performance of the method.
Más información
Título según WOS: | Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry |
Título según SCOPUS: | Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry |
Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS |
Volumen: | 29 |
Número: | 1 |
Editorial: | OXFORD UNIV PRESS |
Fecha de publicación: | 2009 |
Página de inicio: | 180 |
Página final: | 207 |
Idioma: | English |
URL: | http://imanum.oxfordjournals.org/cgi/doi/10.1093/imanum/drn002 |
DOI: |
10.1093/imanum/drn002 |
Notas: | ISI, SCOPUS |