Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry

Hernandez, E.; Otárola E.; Rodriguez, R; Sanhueza, F

Abstract

The aim of this paper is to analyse a mixed finite-element method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are proved for displacements, rotations and shear stresses of the vibration modes, as well as a double order of convergence for the vibration frequencies. These estimates are essentially independent of the thickness of the rod, which leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the performance of the method.

Más información

Título según WOS: Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry
Título según SCOPUS: Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry
Título de la Revista: IMA JOURNAL OF NUMERICAL ANALYSIS
Volumen: 29
Número: 1
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2009
Página de inicio: 180
Página final: 207
Idioma: English
URL: http://imanum.oxfordjournals.org/cgi/doi/10.1093/imanum/drn002
DOI:

10.1093/imanum/drn002

Notas: ISI, SCOPUS