Variational convergence of bivariate functions: lopsided convergence

Jofré A; Wets, RJB

Abstract

We explore convergence notions for bivariate functions that yield convergence and stability results for their maxinf (or minsup) points. This lays the foundations for the study of the stability of solutions to variational inequalities, the solutions of inclusions, of Nash equilibrium points of non-cooperative games and Walras economic equilibrium points, of fixed points, of solutions to inclusions, the primal and dual solutions of convex optimization problems and of zero-sum games. These applications will be dealt with in a couple of accompanying papers. © 2007 Springer-Verlag.

Más información

Título según WOS: Variational convergence of bivariate functions: lopsided convergence
Título según SCOPUS: Variational convergence of bivariate functions: Lopsided convergence
Título de la Revista: MATHEMATICAL PROGRAMMING
Volumen: 116
Número: 01-feb
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2009
Página de inicio: 275
Página final: 295
Idioma: English
URL: http://link.springer.com/10.1007/s10107-007-0122-8
DOI:

10.1007/s10107-007-0122-8

Notas: ISI, SCOPUS