Variational convergence of bivariate functions: lopsided convergence
Abstract
We explore convergence notions for bivariate functions that yield convergence and stability results for their maxinf (or minsup) points. This lays the foundations for the study of the stability of solutions to variational inequalities, the solutions of inclusions, of Nash equilibrium points of non-cooperative games and Walras economic equilibrium points, of fixed points, of solutions to inclusions, the primal and dual solutions of convex optimization problems and of zero-sum games. These applications will be dealt with in a couple of accompanying papers. © 2007 Springer-Verlag.
Más información
Título según WOS: | Variational convergence of bivariate functions: lopsided convergence |
Título según SCOPUS: | Variational convergence of bivariate functions: Lopsided convergence |
Título de la Revista: | MATHEMATICAL PROGRAMMING |
Volumen: | 116 |
Número: | 01-feb |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2009 |
Página de inicio: | 275 |
Página final: | 295 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s10107-007-0122-8 |
DOI: |
10.1007/s10107-007-0122-8 |
Notas: | ISI, SCOPUS |