Sequence entropy and rigid sigma-algebras

Coronel, A; Maass A.; Shao, S

Abstract

We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,y,v,T) be a factor of a measure-theoretical dynamical system (X, X, µ, T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence ACS such that hA µ(T,e | y) = Hµ(e | K.(X | Y)) for all finite partitions e, where K.(X | Y) is the Kronecker algebra over y. A similar result holds for rigid algebras over y. As an application, we characterize compact, rigid and mixing extensions via relative sequence entropy. © Instytut Matematyczny PAN, 2009.

Más información

Título según WOS: Sequence entropy and rigid sigma-algebras
Título según SCOPUS: Sequence entropy and rigid ?-algebras
Título de la Revista: STUDIA MATHEMATICA
Volumen: 194
Número: 3
Editorial: POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN
Fecha de publicación: 2009
Página de inicio: 207
Página final: 230
Idioma: English
URL: http://journals.impan.pl/cgi-bin/doi?sm194-3-1
DOI:

10.4064/sm194-3-1

Notas: ISI, SCOPUS