NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION

Bansal A.; Barnafi, N.A.; Pandey, DN

Keywords: navier-stokes equations, banach fixed point theorem, A priori analysis, Nitsche's method, Navier boundary conditions, Banach-Ne & ccaron, as-Babu & scaron, ka theorem, variational multiscale modeling, large eddy simulation

Abstract

In this paper, we analyze Nitsche's method for the stationary Navier-Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e., Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Ne & ccaron;as-Babu & scaron;ka and Banach fixed point theorems under standard small data assumptions. We also provide optimal convergence rates for the approximation error. Furthermore, we propose a quasi-static VMS-LES formulation with Nitsche for the Navier-Stokes equations with slip boundary conditions to address the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through several numerical tests in well-established benchmark problems.

Más información

Título según WOS: NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION
Título de la Revista: ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS
Volumen: 58
Número: 5
Editorial: EDP SCIENCES S A
Fecha de publicación: 2024
Página de inicio: 2079
Página final: 2115
Idioma: English
DOI:

10.1051/m2an/2024070

Notas: ISI