NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION
Keywords: navier-stokes equations, banach fixed point theorem, A priori analysis, Nitsche's method, Navier boundary conditions, Banach-Ne & ccaron, as-Babu & scaron, ka theorem, variational multiscale modeling, large eddy simulation
Abstract
In this paper, we analyze Nitsche's method for the stationary Navier-Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e., Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Ne & ccaron;as-Babu & scaron;ka and Banach fixed point theorems under standard small data assumptions. We also provide optimal convergence rates for the approximation error. Furthermore, we propose a quasi-static VMS-LES formulation with Nitsche for the Navier-Stokes equations with slip boundary conditions to address the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through several numerical tests in well-established benchmark problems.
Más información
Título según WOS: | NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION |
Título de la Revista: | ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS |
Volumen: | 58 |
Número: | 5 |
Editorial: | EDP SCIENCES S A |
Fecha de publicación: | 2024 |
Página de inicio: | 2079 |
Página final: | 2115 |
Idioma: | English |
DOI: |
10.1051/m2an/2024070 |
Notas: | ISI |