HADAMARD FUNCTIONS OF INVERSE M-MATRICES
Abstract
We prove that the class of generalized ultrametric matrices (GUM) is the largest class of bipotential matrices stable under Hadamard increasing functions. We also show that any power a = 1, in the sense of Hadamard functions, of an inverse M-matrix is also inverse M-matrix. This was conjectured for a = 2 by Neumannin[Linear Algebra Appl., 285 (1998), pp. 277-290], and solved for integer a = 1by Chen in[Linear Algebra Appl., 381 (2004), pp. 53-60]. We study the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient conditions for a filtered matrix to be a bipotential. © 2009 Society for Industrial and Applied Mathematics.
Más información
Título según WOS: | HADAMARD FUNCTIONS OF INVERSE M-MATRICES |
Título según SCOPUS: | Hadamard functions of inverse M-matrices |
Título de la Revista: | SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS |
Volumen: | 31 |
Número: | 2 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2009 |
Página de inicio: | 289 |
Página final: | 315 |
Idioma: | English |
URL: | http://epubs.siam.org/doi/abs/10.1137/060651082 |
DOI: |
10.1137/060651082 |
Notas: | ISI, SCOPUS |