HADAMARD FUNCTIONS OF INVERSE M-MATRICES

Dellacherie C.; Martínez, S.; Martin, JS

Abstract

We prove that the class of generalized ultrametric matrices (GUM) is the largest class of bipotential matrices stable under Hadamard increasing functions. We also show that any power a = 1, in the sense of Hadamard functions, of an inverse M-matrix is also inverse M-matrix. This was conjectured for a = 2 by Neumannin[Linear Algebra Appl., 285 (1998), pp. 277-290], and solved for integer a = 1by Chen in[Linear Algebra Appl., 381 (2004), pp. 53-60]. We study the class of filtered matrices, which include naturally the GUM matrices, and present some sufficient conditions for a filtered matrix to be a bipotential. © 2009 Society for Industrial and Applied Mathematics.

Más información

Título según WOS: HADAMARD FUNCTIONS OF INVERSE M-MATRICES
Título según SCOPUS: Hadamard functions of inverse M-matrices
Título de la Revista: SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
Volumen: 31
Número: 2
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2009
Página de inicio: 289
Página final: 315
Idioma: English
URL: http://epubs.siam.org/doi/abs/10.1137/060651082
DOI:

10.1137/060651082

Notas: ISI, SCOPUS