ASYMPTOTIC EXPANSION OF PENALTY-GRADIENT FLOWS IN LINEAR PROGRAMMING

Baillon JB; Cominetti R.

Abstract

We establish asymptotic expansions for nonautonomous gradient flows of the form u?(t) = - ?f(u(t), r(t)), where f(x, r) is a penalty approximation of a linear program and the penalty parameter r(t) tends to 0 as t? 8. Under appropriate conditions we show that every integral curve satisfies u(t) = u8 + r(t) d* 0 + ? (t)r(t) w* 0 + o(?(t)r(t)) for suitable vectors u8, d* 0, and w* 0. We deduce an asymptotic expansion for a related dual trajectory, and we show that the primal-dual limit point is a pair of strictly complementary optimal solutions for the linear program. © 2009 Society for Industrial and Applied Mathematics.

Más información

Título según WOS: ASYMPTOTIC EXPANSION OF PENALTY-GRADIENT FLOWS IN LINEAR PROGRAMMING
Título según SCOPUS: Asymptotic expansion of penalty-gradient flows in linear programming
Título de la Revista: SIAM JOURNAL ON OPTIMIZATION
Volumen: 20
Número: 2
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2009
Página de inicio: 728
Página final: 739
Idioma: English
URL: http://epubs.siam.org/doi/abs/10.1137/070689176
DOI:

10.1137/070689176

Notas: ISI, SCOPUS