ASYMPTOTIC EXPANSION OF PENALTY-GRADIENT FLOWS IN LINEAR PROGRAMMING
Abstract
We establish asymptotic expansions for nonautonomous gradient flows of the form u?(t) = - ?f(u(t), r(t)), where f(x, r) is a penalty approximation of a linear program and the penalty parameter r(t) tends to 0 as t? 8. Under appropriate conditions we show that every integral curve satisfies u(t) = u8 + r(t) d* 0 + ? (t)r(t) w* 0 + o(?(t)r(t)) for suitable vectors u8, d* 0, and w* 0. We deduce an asymptotic expansion for a related dual trajectory, and we show that the primal-dual limit point is a pair of strictly complementary optimal solutions for the linear program. © 2009 Society for Industrial and Applied Mathematics.
Más información
| Título según WOS: | ASYMPTOTIC EXPANSION OF PENALTY-GRADIENT FLOWS IN LINEAR PROGRAMMING |
| Título según SCOPUS: | Asymptotic expansion of penalty-gradient flows in linear programming |
| Título de la Revista: | SIAM JOURNAL ON OPTIMIZATION |
| Volumen: | 20 |
| Número: | 2 |
| Editorial: | SIAM PUBLICATIONS |
| Fecha de publicación: | 2009 |
| Página de inicio: | 728 |
| Página final: | 739 |
| Idioma: | English |
| URL: | http://epubs.siam.org/doi/abs/10.1137/070689176 |
| DOI: |
10.1137/070689176 |
| Notas: | ISI, SCOPUS |