Optimising the placement of additional drill holes to enhanced mineral resource classification: a case study on a porphyry copper deposit
Keywords: kriging variance, particle swarm optimisation, Mineral resource classification, combined variance
Abstract
In this study, we compared outcomes of optimising the placement of five additional drill holes using three geostatistical cost functions (AKV, WAKV, and CV) and the Particle Swarm Optimisation algorithm (PSO). WAKV identified locations with higher average copper grades compared to AKV. Conversely, CV suggested sites with high kriging variance and copper grade variation. Initial holes, alongside those determined by each cost function, were used to classify mineral resources. Findings underscored the effectiveness of optimising drill hole placement based on cost functions in reducing uncertainty and improving mineral resource classification.
Más información
Título según WOS: | Optimising the placement of additional drill holes to enhanced mineral resource classification: a case study on a porphyry copper deposit |
Título de la Revista: | INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT |
Volumen: | 39 |
Número: | 2 |
Editorial: | TAYLOR & FRANCIS LTD |
Fecha de publicación: | 2025 |
Página de inicio: | 134 |
Página final: | 151 |
Idioma: | English |
DOI: |
10.1080/17480930.2024.2364131 |
Notas: | ISI |