Micro-arranged ZnO particles and conductive fillers in PCL composites for enhanced piezoelectric and dielectric properties in bone tissue engineering applications

Fernández-Gil, F; Olate-Moya, F; Aguilar-Cosme, JR; García-Molleja, J; Fernandez-Blazquez, JP; Cartmell, S; Palza, H

Keywords: ultrasound, scaffold, piezoelectricity, 3D-printing, Interfacial polarization, Particle alignment

Abstract

Piezoelectric polymers are promising for replicating bone tissue's piezoelectric properties. Typically, non-piezoelectric biopolymers are combined with piezoelectric particles, but this yields low piezoelectric output. We addressed this by aligning piezoelectric zinc oxide (ZnO) micro-rods in 3D-printed polycaprolactone (PCL) scaffolds and adding conductive particles like thermally reduced graphene oxide (TrGO). Our findings revealed that controlled particle alignment in PCL/ZnO composites significantly enhanced dielectric properties. TrGO further improved these properties by creating conductive pathways and micro-capacitor networks by apparent polarization due to electron displacement, promoting Maxwell-Wagner-Sillars effect. This design strategy significantly increased dielectric and piezoelectric performance, achieving values akin to bone tissue. TrGO also boosted the piezoelectric response, with maximum voltage generation of 696 ± 52 and 142 ± 9 mV during direct contact mechanical pressure by a linear actuator and remote mechanical pressure induced by ultrasound waves, respectively. The 3D-printed composites demonstrated bioactivity for MC3T3-E1, enhanced ALP activity, improved cell adhesion, migration, and extracellular matrix formation under remote ultrasound stimulation, underscoring the potential of these novel ternary composites for bone tissue engineering. © 2025 The Author(s)

Más información

Título según WOS: Micro-arranged ZnO particles and conductive fillers in PCL composites for enhanced piezoelectric and dielectric properties in bone tissue engineering applications
Título según SCOPUS: Micro-arranged ZnO particles and conductive fillers in PCL composites for enhanced piezoelectric and dielectric properties in bone tissue engineering applications
Título de la Revista: Materials and Design
Volumen: 251
Editorial: Elsevier Ltd.
Fecha de publicación: 2025
Idioma: English
DOI:

10.1016/j.matdes.2025.113672

Notas: ISI, SCOPUS