Real-Time Anomaly Detection Algorithm for DoS Attacks in Communication Networks with IEDs Using IEC 61850

Castillo T.; Soto I; Chávez, H

Keywords: real-time, machine learning, anomaly detection, dos, Cybersecurity, IEC 61850, IED, Energy Networks

Abstract

This paper tackles the cybersecurity challenges in smart energy systems using the IEC 61850 standard. We propose a real-time anomaly detection algorithm for identifying Denial of Service (DoS) attacks in networks with Intelligent Electronic Devices (IEDs). The algorithm, based on an Autoencoder neural network, analyzes network traffic to detect anomalies via reconstruction errors. Tested on a dataset with both normal and DoS attack traffic, the algorithm achieved optimal results, with the 90th percentile showing the highest F1-Score and perfect Recall, ensuring no anomalies are missed. The findings highlight its effectiveness in enhancing the cybersecurity of smart energy networks.

Más información

Título según WOS: Real-Time Anomaly Detection Algorithm for DoS Attacks in Communication Networks with IEDs Using IEC 61850
Título de la Revista: SMART CITIES, ICSC-CITIES 2024
Volumen: 2349
Editorial: SPRINGER INTERNATIONAL PUBLISHING AG
Fecha de publicación: 2025
Página de inicio: 365
Página final: 379
Idioma: English
DOI:

10.1007/978-3-031-83432-5_26

Notas: ISI