Prediction of water chemical properties in the cycle of a coal power plant using artificial neural networks
Abstract
This paper describes a systematic methodology based on artificial neural networks for model identification and its application to the prediction of water chemical properties under normal operation conditions in a power plant. The model obtained allows to detect incipient anomalies by comparison between the real and predicted values.
Más información
| Editorial: | IEEE |
| Fecha de publicación: | 1998 |
| Año de Inicio/Término: | 4-9 May 1998 |
| Página de inicio: | 1981 |
| Página final: | 1986 |
| Idioma: | English |
| URL: | https://ieeexplore.ieee.org/document/687163 |
| DOI: |
10.1109/IJCNN.1998.687163 |