Hybrid Deep Learning Approach for Automated Sleep Cycle Analysis
Abstract
Health and well-being, both mental and physical, depend largely on adequate sleep. Many conditions arise from a disrupted sleep cycle, significantly deteriorating the quality of life of those affected. The analysis of the sleep cycle provide valuable information about sleep stages, which are employed in sleep medicine for the diagnosis of numerous diseases. The clinical standard for sleep data recording is polysomnography (PSG), which records electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and other signals during sleep activity. Recently, machine learning approaches have exhibited high accuracy in applications such as the classification and prediction of biomedical signals. This study presents a hybrid neural network architecture composed of convolutional neural network (CNN) layers, bidirectional long short-term memory (BiLSTM) layers, and attention mechanism layers in order to process large volumes of EEG data in PSG files. The objective is to design a framework for automated feature extraction. To address class imbalance, an epoch-level random undersampling (E-LRUS) method is proposed, discarding full epochs from majority classes while preserving the temporal structure, unlike traditional methods that remove individual samples. This method has been tested on EEG recordings acquired from the public Sleep EDF Expanded database, achieving an overall accuracy rate of 78.67% along with an F1-score of 72.10%. The findings show that this method proves to be effective for sleep stage classification in patients.
Más información
Título según WOS: | ID WOS:001515127500001 Not found in local WOS DB |
Título de la Revista: | APPLIED SCIENCES-BASEL |
Volumen: | 15 |
Número: | 12 |
Editorial: | MDPI |
Fecha de publicación: | 2025 |
DOI: |
10.3390/app15126844 |
Notas: | ISI |