Gaussian process modelling for improved resolution in Faraday depth reconstruction

Ndiritu, S. W.; Scaife, A. M. M.; Tabb, D. L.; Carcamo, M.; Hanson, J.

Abstract

The incomplete sampling of data in complex polarization measurements from radio telescopes negatively affects both the rotation measure (RM) transfer function and the Faraday depth spectra derived from these data. Such gaps in polarization data are mostly caused by flagging of radio frequency interference and their effects worsen as the percentage of missing data increases. In this paper we present a novel method for inferring missing polarization data based on Gaussian processes (GPs). GPs are stochastic processes that enable us to encode prior knowledge in our models. They also provide a comprehensive way of incorporating and quantifying uncertainties in regression modelling. In addition to providing non-parametric model estimates for missing values, we also demonstrate that GP modelling can be used for recovering rotation measure values directly from complex polarization data, and that inferring missing polarization data using this probabilistic method improves the resolution of reconstructed Faraday depth spectra.

Más información

Título según WOS: Gaussian process modelling for improved resolution in Faraday depth reconstruction
Título de la Revista: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volumen: 502
Número: 4
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2021
Página de inicio: 5839
Página final: 5853
DOI:

10.1093/mnras/stab379

Notas: ISI