In Vitro Antagonism of Two Isolates of the Genus Trichoderma on Fusarium and Botryodiplodia sp., Pathogenic Fungi of Schizolobium parahyba in Ecuador
Abstract
A newly emerging disease affecting Schizolobium parahyba (commonly known as pachaco), termed “decline and dieback,” has been reported in association with the fungal pathogens Fusarium sp. and Botryodiplodia sp. This study assessed the antagonistic potential of two Trichoderma sp. isolates (CEP-01 and CEP-02) against these phytopathogens under controlled laboratory conditions. The effects of three temperature regimes (5 ± 2 ◦C, 24 ± 2 ◦C, and 30 ± 2 ◦C) on the growth and inhibitory activity of two Trichoderma spp. isolates were evaluated using a completely randomized design. The first experiment included six treatments with five replicates, while the second comprised twelve treatments, also with five replicates. All assays were conducted on PDA medium. No fungal growth was observed at 5 ± 2 ◦C. However, at 24 ± 2 ◦C and 30 ± 2 ◦C, both isolates reached maximum growth within 72 h. At 24 ± 2 ◦C, both Trichoderma spp. isolates exhibited inhibitory activity against Fusarium sp. FE07 and FE08, with radial growth inhibition percentages (RGIP) ranging from 37.6% to 44.4% and 52,8% to 54.6%, respectively. When combined, the isolates achieved up to 60% inhibition against Fusarium sp., while Botryodiplodia sp. was inhibited by 40%. At 30 ± 2 ◦C, the antagonistic activity of Trichoderma sp. CEP-01 declined (25.6–32.4% RGIP), whereas Trichoderma sp. CEP-02 showed increased inhibition (60.3%–67.2%). The combination of isolates exhibited the highest inhibitory effect against Fusarium sp. FE07 and FE08 (68.4%–69.3%). Nonetheless, the inhibitory effect on Botryodiplodia sp. BIOT was reduced under elevated temperatures across all treatments. These findings reinforce the potential of Trichoderma spp. isolates as a viable and eco-friendly alternative for the biological control of pathogens affecting S. parahyba, contributing to more sustainable disease management practices. The observed inhibitory capacity of Trichoderma sp., especially under optimal temperature conditions, highlights its potential for application in integrated disease management programs, contributing to forest health and reducing reliance on chemical products
Más información
Título de la Revista: | INTERNATIONAL JOURNAL OF PLANT BIOLOGY |
Volumen: | 16 |
Fecha de publicación: | 2025 |
Página final: | 85 |
URL: | https://www.mdpi.com/2037-0164/16/3/85 |