Numerical approximation of the LQR problem in a strongly damped wave equation

Hernandez, E.; Kalise, D; Otárola E.

Abstract

The aim of this work is to obtain optimal-order error estimates for the LQR (Linear-quadratic regulator) problem in a strongly damped 1-D wave equation. We consider a finite element discretization of the system dynamics and a control law constant in the spatial dimension, which is studied in both point and distributed case. To solve the LQR problem, we seek a feedback control which depends on the solution of an algebraic Riccati equation. Optimal error estimates are proved in the framework of the approximation theory for control of infinite-dimensional systems. Finally, numerical results are presented to illustrate that the optimal rates of convergence are achieved. © 2008 Springer Science+Business Media, LLC.

Más información

Título según WOS: Numerical approximation of the LQR problem in a strongly damped wave equation
Título según SCOPUS: Numerical approximation of the LQR problem in a strongly damped wave equation
Título de la Revista: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS
Volumen: 47
Número: 1
Editorial: Springer
Fecha de publicación: 2010
Página de inicio: 161
Página final: 178
Idioma: English
URL: http://link.springer.com/10.1007/s10589-008-9213-6
DOI:

10.1007/s10589-008-9213-6

Notas: ISI, SCOPUS