Optimal polynomial feedback laws for finite horizon control problems

Kunisch, Karl; Vasquez-Varas, Donato

Abstract

A learning technique for finite horizon optimal control problems and its approximation based on polynomials is analyzed. It allows to circumvent, in part, the curse dimensionality which is involved when the feedback law is constructed by using the Hamilton-Jacobi-Bellman (HJB) equation. The convergence of the method is analyzed, while paying special attention to avoid the use of a global Lipschitz condition on the nonlinearity which describes the control system. The practicality and efficiency of the method is illustrated by several examples. For two of them a direct approach based on the HJB equation would be unfeasible.

Más información

Título según WOS: ID WOS:001121083700001 Not found in local WOS DB
Título de la Revista: COMPUTERS & MATHEMATICS WITH APPLICATIONS
Volumen: 148
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2023
Página de inicio: 113
Página final: 125
DOI:

10.1016/j.camwa.2023.08.004

Notas: ISI