Current Trends and Biotechnological Innovations in Biofouling Control of RO Membranes in Desalination Systems
Abstract
Background: Water scarcity is a pressing global challenge increasingly addressed by advanced desalination that converts seawater into potable water. Reverse osmosis and ultrafiltration dominate because they deliver permeate with very low impurities. Their principal limitation is membrane biofouling, which causes clogging, raises energy, operation, and maintenance costs, and shortens membrane life. Multiple approaches mitigate biofouling—most notably pretreatment trains and engineered surface coatings—but cleaning remains the most decisive remediation pathway. Current practice distinguishes physical, chemical, and biological cleaning. Biological cleaning has gained momentum by exploiting microorganisms that inherently counter biofilms. These strategies include targeted secretion of enzymes and antifouling metabolites, and the application of whole-cell culture supernatants containing the full suite of secreted components. In addition, predatory bacteria can infiltrate established biofilms and eradicate them by lysing prey, thereby accelerating the removal of adherent biomass. Progress across these bio-based approaches signals meaningful advances in fouling control and could substantially improve the efficiency, reliability, and sustainability of desalination facilities. Collectively, they underscore the transformative potential of biological antifouling agents in operational systems. Realizing that potential will require rigorous evaluation of technical performance, long-term stability, compatibility with polyamide membranes, regulatory acceptance, and environmental safety, ultimately alongside scalable production and cost-effective deployment in full-scale plants.
Más información
Título de la Revista: | MEMBRANES |
Fecha de publicación: | 2025 |
URL: | https://www.mdpi.com/2077-0375/15/9/270 |
Notas: | WOS |