Towards a generic control strategy for Evolutionary Algorithms: an adaptive fuzzy-learning approach

Maturana, Jorge; Saubion, Frederic; IEEE

Abstract

This paper presents a new method to generalize strategies in order to control parameters of Evolutionary Algorithms (EAs). A learning process establishes the relationship between optimal quality parameters and diversity, and simplifies control to just one variable, highly correlated with Exploration/Exploitation Balance, in such way that strategies can be defined in more abstract terms. The acquired knowledge is expressed in a simple fashion that helps the user to understand internal mechanics of EA. The model is built after a careful example gathering and encoded in Fuzzy Logic Controllers.

Más información

Título según WOS: ID WOS:000256053703092 Not found in local WOS DB
Título de la Revista: 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS
Editorial: IEEE
Fecha de publicación: 2007
Página de inicio: 4546
Página final: 4553
Notas: ISI