Towards a generic control strategy for Evolutionary Algorithms: an adaptive fuzzy-learning approach
Abstract
This paper presents a new method to generalize strategies in order to control parameters of Evolutionary Algorithms (EAs). A learning process establishes the relationship between optimal quality parameters and diversity, and simplifies control to just one variable, highly correlated with Exploration/Exploitation Balance, in such way that strategies can be defined in more abstract terms. The acquired knowledge is expressed in a simple fashion that helps the user to understand internal mechanics of EA. The model is built after a careful example gathering and encoded in Fuzzy Logic Controllers.
Más información
Título según WOS: | ID WOS:000256053703092 Not found in local WOS DB |
Título de la Revista: | 2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS |
Editorial: | IEEE |
Fecha de publicación: | 2007 |
Página de inicio: | 4546 |
Página final: | 4553 |
Notas: | ISI |