Minimal orthonormal bases for pure quantum state estimation
Abstract
We present an analytical method to estimate pure quantum states using a minimum of three measurement bases in any finite-dimensional Hilbert space. This is optimal as two bases are insufficient to construct an informationally complete positive operator-valued measurement (IC-POVM) for pure states. We demonstrate our method using a binary tree structure, providing an algorithmic path for implementation. The performance of the method is evaluated through numerical simulations, showcasing its effectiveness for quantum state estimation. © 2024 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften. All rights reserved.
Más información
| Título según WOS: | Minimal orthonormal bases for pure quantum state estimation |
| Título según SCOPUS: | Minimal orthonormal bases for pure quantum state estimation |
| Título de la Revista: | Quantum |
| Volumen: | 8 |
| Editorial: | Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften |
| Fecha de publicación: | 2024 |
| Idioma: | English |
| DOI: |
10.22331/q-2024-02-08-1244 |
| Notas: | ISI, SCOPUS |