Solvability and Galerkin approximations of a class of nonlinear operator equations
Abstract
We generalize the usual Babuška-Brezzi theory to a class of nonlinear variational problems with constraints. The corresponding operator equation has a dual-dual type structure since the nonlinear operator involved has itself a dual structure with a strongly monotone and Lipschitz-continuous main operator. We provide sufficient conditions for the existence and uniqueness of solution of the continuous and Galerkin formulations, and derive a Strang-type estimate for the associated error. An application to the coupling of mixed-FEM and BEM for a nonlinear transmission problem in potential theory is also described.
Más información
Título según WOS: | Solvability and Galerkin approximations of a class of nonlinear operator equations |
Título según SCOPUS: | Solvability and Galerkin approximations of a class of nonlinear operator equations |
Título de la Revista: | ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN |
Volumen: | 21 |
Número: | 3 |
Editorial: | EUROPEAN MATHEMATICAL SOC |
Fecha de publicación: | 2002 |
Página de inicio: | 761 |
Página final: | 781 |
Idioma: | English |
Notas: | ISI, SCOPUS |