Solvability and Galerkin approximations of a class of nonlinear operator equations

Gatica, GN

Abstract

We generalize the usual Babuška-Brezzi theory to a class of nonlinear variational problems with constraints. The corresponding operator equation has a dual-dual type structure since the nonlinear operator involved has itself a dual structure with a strongly monotone and Lipschitz-continuous main operator. We provide sufficient conditions for the existence and uniqueness of solution of the continuous and Galerkin formulations, and derive a Strang-type estimate for the associated error. An application to the coupling of mixed-FEM and BEM for a nonlinear transmission problem in potential theory is also described.

Más información

Título según WOS: Solvability and Galerkin approximations of a class of nonlinear operator equations
Título según SCOPUS: Solvability and Galerkin approximations of a class of nonlinear operator equations
Título de la Revista: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN
Volumen: 21
Número: 3
Editorial: EUROPEAN MATHEMATICAL SOC
Fecha de publicación: 2002
Página de inicio: 761
Página final: 781
Idioma: English
Notas: ISI, SCOPUS