Some remarks about relaxation problems in the Calculus of Variations

Flores, Bazan, F.

Abstract

We study variational problems for the functional F(u) = ??f(x, u(x), Lu(x)) dx where u ? u0 + V, with V being any closed linear subspace of W2,p(?) containing W0 2,p(?), ? is a bounded open set, p > 1, L is a differential operator of second order. We determine the greatest lower semicontinuous function majorised by F for the weak topology of W2,p, for its sequential version if f satisfies no coercivity assumption, showing that in both cases the relaxed functional is expressed in terms of the function ? ? f**(x, u, ?). Finally, an existence result in case f (not necessarily convex) depending only on the Laplacian, is given.

Más información

Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
Volumen: 126
Número: 3
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 1996
Página de inicio: 665
Página final: 675
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-21344451725&partnerID=q2rCbXpz