On the nilpotence of the multiplication operator in commutative right nil algebras
Abstract
We study conditions under which the identity ((xx)x)x = 0 in a commutative nonassociative algebra A implies Rx is nil-potent where Rx is the multiplication operator Rx(y) = xy for all y in A. The separate conditions that we found to be sufficient are (1) dimension four or less, (2) any additional non-trivial identity of degree four, or (3) ((xx)x)(xx) = 0. We assume characteristic ? 2, 3.
Más información
| Título según WOS: | On the nilpotence of the multiplication operator in commutative right nil algebras |
| Título según SCOPUS: | On the nilpotence of the multiplication operator in commutative right nil algebras |
| Título de la Revista: | COMMUNICATIONS IN ALGEBRA |
| Volumen: | 30 |
| Número: | 7 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2002 |
| Página de inicio: | 3473 |
| Página final: | 3488 |
| Idioma: | English |
| URL: | http://www.tandfonline.com/doi/abs/10.1081/AGB-120004499 |
| DOI: |
10.1081/AGB-120004499 |
| Notas: | ISI, SCOPUS |