High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrodinger equation
Abstract
This article is devoted to the nonlinear Schrödinger equation [InlineMediaObject not available: see fulltext.] when the parameter ε approaches zero. All possible asymptotic behaviors of bounded solutions can be described by means of envelopes, or alternatively by adiabatic profiles. We prove that for every envelope, there exists a family of solutions reaching that asymptotic behavior, in the case of bounded intervals. We use a combination of the Nehari finite dimensional reduction together with degree theory. Our main contribution is to compute the degree of each cluster, which is a key piece of information in order to glue them.
Más información
| Título según WOS: | High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrodinger equation |
| Título según SCOPUS: | High frequency solutions for the singularly-perturbed one-dimensional nonlinear Schrödinger equation |
| Título de la Revista: | ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS |
| Volumen: | 182 |
| Número: | 2 |
| Editorial: | Springer |
| Fecha de publicación: | 2006 |
| Página de inicio: | 333 |
| Página final: | 366 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00205-006-0431-8 |
| DOI: |
10.1007/s00205-006-0431-8 |
| Notas: | ISI, SCOPUS |