Existence results for nonproper elliptic equations involving the pucci operator
Abstract
We study the equation {-MλΛ + (D 2u) = f(x, u) in Ω, u = 0 on ∂Ω, in general smooth bounded domain Ω, and show it possesses nontrivial solutions provided that: • f is sublinear, or • f is superlinear and the equation admits a priori bounds. The existence result in the superlinear case is based on a new Liouville type theorem for -Mλ,Λ + (D 2u) = up in a half-space. Copyright © Taylor & Francis Group, LLC.
Más información
| Título según WOS: | Existence results for nonproper elliptic equations involving the pucci operator |
| Título según SCOPUS: | Existence results for nonproper elliptic equations involving the Pucci operator |
| Título de la Revista: | COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 31 |
| Número: | 7 |
| Editorial: | TAYLOR & FRANCIS INC |
| Fecha de publicación: | 2006 |
| Página de inicio: | 987 |
| Página final: | 1003 |
| Idioma: | English |
| URL: | http://www.tandfonline.com/doi/abs/10.1080/03605300500394421 |
| DOI: |
10.1080/03605300500394421 |
| Notas: | ISI, SCOPUS |