Inspecting the concept knowledge graph encoded by modern language models

Aspillaga, Carlos

Abstract

The field of natural language understanding has experienced exponential progress in the last few years, with impressive results in several tasks. This success has motivated researchers to study the underlying knowledge encoded by these models. Despite this, attempts to understand their semantic capabilities have not been successful, often leading to non-conclusive, or contradictory conclusions among different works. Via a probing classifier, we extract the underlying knowledge graph of nine of the most influential language models of the last years, including word embeddings, text generators, and context encoders. This probe is based on concept relatedness, grounded on WordNet. Our results reveal that all the models encode this knowledge, but suffer from several inaccuracies. Furthermore, we show that the different architectures and training strategies lead to different model biases. We conduct a systematic evaluation to discover specific factors that explain why some concepts are challenging. We hope our insights will motivate the development of models that capture concepts more precisely.

Más información

Título según WOS: Inspecting the concept knowledge graph encoded by modern language models
Fecha de publicación: 2021
Año de Inicio/Término: 1 August 2021 through 6 August 2021
Página de inicio: 2984
Página final: 3000
Idioma: English
Notas: ISI