A wrapper method for feature selection using Support Vector Machines
Abstract
We introduce a novel wrapper Algorithm for Feature Selection, using Support Vector Machines with kernel functions. Our method is based on a sequential backward selection, using the number of errors in a validation subset as the measure to decide which feature to remove in each iteration. We compare our approach with other algorithms like a filter method or Recursive Feature Elimination SVM to demonstrate its effectiveness and efficiency. © 2009 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | A wrapper method for feature selection using Support Vector Machines |
| Título según SCOPUS: | A wrapper method for feature selection using Support Vector Machines |
| Título de la Revista: | INFORMATION SCIENCES |
| Volumen: | 179 |
| Número: | 13 |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2009 |
| Página de inicio: | 2208 |
| Página final: | 2217 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0020025509000917 |
| DOI: |
10.1016/j.ins.2009.02.014 |
| Notas: | ISI, SCOPUS |