Evaporation suppression and solar energy collection in a salt-gradient solar pond

Ruskowitz J.A.; Suárez F.; Tyler, S.W.; Childress A.E.


Evaporation represents a significant challenge to the successful operation of solar ponds. In this work, the suppression of evaporative losses from a salt-gradient solar pond was investigated in the laboratory. Two floating element designs (floating discs and floating hemispheres) and a continuous cover were tested; all three covers/elements were non-opaque, which is unique from previous studies of evaporation suppression in ponds or pools where increasing temperature and heat content are not desired. It was found that floating discs were the most effective element; full (88%) coverage of the solar pond with the floating discs decreases the evaporation rate from 4.8 to 2.5 mm/day (47% decrease), increases the highest achieved temperature from 34 degrees C to 43 degrees C (26% increase), and increases heat content from 179 to 220 MJ (22% increase). As a result of reduced evaporative losses at the surface, the amount of heat lost to the atmosphere is also reduced, which results in lower conductive losses from the NCZ and the LCZ and hence, increased temperatures in the NCZ and LCZ. The magnitude of evaporation reduction observed in this work is important as it may enable solar pond operation in locations with limited water supply for replenishment. The increase in heat content allows more heat to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds. (C) 2013 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Evaporation suppression and solar energy collection in a salt-gradient solar pond
Título de la Revista: SOLAR ENERGY
Volumen: 99
Fecha de publicación: 2014
Página de inicio: 36
Página final: 46
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0038092X13004659


Notas: ISI