Multiphysics behavior of a magneto-rheological damper and experimental validation
Abstract
This investigation deals with the design, manufacturing, and testing of a large-capacity MR damper prototype. The MR damper uses external coils that magnetize the MR-fluid as it moves out of the main cylinder through an external cylindrical gap. In its design, multi-physics numerical simulations are used to better understand its force-velocity constitutive behavior, and its eventual use in conjunction with tuned mass dampers for vibration reduction of high-rise buildings. Multi-physics finite element models are used to investigate the coupled magnetic and fluid-dynamic behavior of these dampers and thus facilitate the proof-of-concept testing of several new designs. In these models, the magnetic field and the dynamic behavior of the fluid are represented through the well-known Maxwell and Navier-Stokes equations. Both fields are coupled through the viscosity of the magneto-rheological fluid used, which in turn depends on the magnetic field strength. Some parameters of the numerical model are adjusted using cyclic and hybrid testing results on a 15 ton MR damper with internal coils. Numerical and experimental results for the 15 ton MR damper showed very good agreement, which supports the use of the proposed cascade magnetic-fluid model. The construction of the 97 ton MR damper involved several technical challenges, such as the use of a bimetallic cylinder for the external coils to confine the magnetic field within a predefined magnetic circuit. As it should be expected, test results of the manufactured MR damper show that the damping force increases with the applied current intensity. However, a larger discrepancy between the predicted and measured force in the large damper is observed, which is studied and discussed further herein. (C) 2014 Elsevier Ltd. All rights reserved.
Más información
| Título según WOS: | Multiphysics behavior of a magneto-rheological damper and experimental validation |
| Título según SCOPUS: | Multiphysics behavior of a magneto-rheological damper and experimental validation |
| Título de la Revista: | ENGINEERING STRUCTURES |
| Volumen: | 69 |
| Editorial: | ELSEVIER SCI LTD |
| Fecha de publicación: | 2014 |
| Página de inicio: | 194 |
| Página final: | 205 |
| Idioma: | English |
| DOI: |
10.1016/j.engstruct.2014.03.016 |
| Notas: | ISI, SCOPUS |