Upper Bounds for Randic Spread
Abstract
The Rancho spread of a simple undirected graph G, spr(R)(G), is equal to the maximal difference between two eigenvalues of the Rancho matrix, disregarding the spectral radius [Comes et al., MATCH Commun. Math. Comput. Chem. 72 (2014) 249-266]. Using a rank-one perturbation on the Randic matrix of G it is obtained a new matrix whose matricial spread coincide with spr(R)(G). By means of this result, upper bounds for spr(R)(G) are obtained.
Más información
| Título según WOS: | Upper Bounds for Randic Spread |
| Título de la Revista: | MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY |
| Volumen: | 72 |
| Número: | 1 |
| Editorial: | UNIV KRAGUJEVAC, FAC SCIENCE |
| Fecha de publicación: | 2014 |
| Página de inicio: | 267 |
| Página final: | 278 |
| Idioma: | English |
| Notas: | ISI |