Uniform decay rates for a suspension bridge with locally distributed nonlinear damping
Abstract
We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result is also numerically proved. (C) 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Más información
| Título según WOS: | Uniform decay rates for a suspension bridge with locally distributed nonlinear damping |
| Título según SCOPUS: | Uniform decay rates for a suspension bridge with locally distributed nonlinear damping |
| Título de la Revista: | JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS |
| Volumen: | 357 |
| Número: | 4 |
| Editorial: | PERGAMON-ELSEVIER SCIENCE LTD |
| Fecha de publicación: | 2020 |
| Página de inicio: | 2388 |
| Página final: | 2419 |
| Idioma: | English |
| DOI: |
10.1016/j.jfranklin.2020.01.004 |
| Notas: | ISI, SCOPUS |