Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes
Abstract
The Plantae comprising red, green (including land plants), and glaucophyte algae are postulated to have a single common ancestor that is the founding lineage of photosynthetic eukaryotes [1, 2]. However, recent multiprotein phylogenies provide little [3, 4] or no [5, 6] support for this hypothesis. This may reflect limited complete genome data available for red algae, currently only the highly reduced genome of Cyanidioschyzon merolae [7], a reticulate gene ancestry [5], or variable gene divergence rates that mislead phylogenetic inference [8]. Here, using novel genome data from the mesophilic Porphyridium cruentum and Calliarthron tuberculosum, we analyze 60,000 novel red algal genes to test the monophyly of red + green (RG) algae and their extent of gene sharing with other lineages. Using a gene-by-gene approach, we find an emerging signal of RG monophyly (supported by similar to 50% of the examined protein phylogenies) that increases with the number of distinct phyla and terminal taxa in the analysis. A total of 1,808 phylogenies show evidence of gene sharing between Plantae and other lineages. We demonstrate that a rich mesophilic red algal gene repertoire is crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.
Más información
| Título según WOS: | ID WOS:000287767600027 Not found in local WOS DB |
| Título de la Revista: | CURRENT BIOLOGY |
| Volumen: | 21 |
| Número: | 4 |
| Editorial: | Cell Press |
| Fecha de publicación: | 2011 |
| Página de inicio: | 328 |
| Página final: | 333 |
| DOI: |
10.1016/j.cub.2011.01.037 |
| Notas: | ISI |