Minimal configurations for the Frenkel-Kontorova model on a quasicrystal
Abstract
In this paper, we consider the Frenkel-Kontorova model of a one dimensional chain of atoms submitted to a potential. This potential splits into an interaction potential and a potential induced by an underlying substrate which is a quasicrystal. Under standard hypotheses, we show that every minimal configuration has a rotation number, that the rotation number varies continuously with the minimal configuration, and that every non negative real number is the rotation number of a minimal configuration. This generalizes well known results obtained by S. Aubry and P.Y. le Daeron in the case of a crystalline substrate.
Más información
| Título según WOS: | Minimal configurations for the Frenkel-Kontorova model on a quasicrystal |
| Título según SCOPUS: | Minimal configurations for the Frenkel-Kontorova model on a quasicrystal |
| Título de la Revista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
| Volumen: | 265 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2006 |
| Página de inicio: | 165 |
| Página final: | 188 |
| Idioma: | English |
| URL: | http://link.springer.com/10.1007/s00220-006-1531-x |
| DOI: |
10.1007/s00220-006-1531-x |
| Notas: | ISI, SCOPUS |