Improving mechanical properties and antibacterial response of a/b ternary Ti-Ta alloy foams for biomedical uses

Aguilar, C.; Martin, F. San; Martinez, C.; Camara, B.; Claverias, F.; Undabarrena, A.; Sancy, M.; Salinas, V.; Munoz, L.


This study investigates the potential of Ti-Ta-Sn alloys for biomedical applications due to their excellent mechanical properties and biocompatibility, with a particular focus on their use in trabecular bone replacement. This work aims to analyze the influence that of Sn has on the mechanical properties and antibacterial response of a -b ternary Ti-13Ta-xSn (x:3, 6, 9, and 12 at.%) alloy foams. The Ti-based alloys were designed considering three aspects; (i) final microstructure, (ii) alloying element types, and (iii) thermodynamics while using MAAT and ThermoCalc software. The alloys were obtained by mechanical alloying, with used milling times being 30 h for Ti-13Ta-3Sn, 10 h for Ti-13Ta-6Sn, 10 h for Ti-13Ta-9Sn, and 15 h for Ti-13Ta-12Sn. The foams were obtained using NaCl as the space holder (50 v/v% porosity) and consolidated by a hot pressing method at 780 DEG;C for 30 min, applying a load of 40 MPa. Both the Staphylococcus aureus ATCC 6538 strain and Escherichia coli ATCC 8739 strain were used to evaluate the antibacterial responses of Ti-based alloy foams. The Ti-based alloy foams were composed mostly by a mix of a and b-phases. The metallic foams exhibited relative homogeneous pore distribution with a size between 100 and 450 mm and having an average porosity slightly higher than 50%. The samples showed elastic modulus values be-tween 1 and 2 GPa, compressive yield strengths over 150 MPa, and microhardness over 450 HV. All Ti-based alloy foams showed no antibacterial activity nor bacterial adhesion, indicating that there is bacterial adhesion inhibition. COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (

Más información

Título según WOS: ID WOS:001021902700001 Not found in local WOS DB
Volumen: 24
Editorial: Elsevier
Fecha de publicación: 2023
Página de inicio: 8735
Página final: 8753


Notas: ISI