Fl.jpg_thumb90

Felipe Andrés Lepe Araya

Assistant Professor

Universidad del Bío-Bío

Concepción, Chile

Líneas de Investigación


My main research field is numerical analysis of partial differential equations and related problems. These problems are related to develop and analyze numerical methods to approximate the solutions of fluid and solid mechanics problems.

Educación

  •  Mathematics, UNIVERSIDAD DE CONCEPCION. Chile, 2018
  •  Education, UNIVERSIDAD DE CONCEPCION. Chile, 2010
  •  Profesor de Matemática y Educación Tecnológica, UNIVERSIDAD DE CONCEPCION. Chile, 2010
  •  Mathematics, UNIVERSIDAD DEL BIO-BIO. Chile, 2017

Experiencia Académica

  •   Research Assitant Part Time

    UNIVERSIDAD DEL BIO-BIO

    Ciencias

    Concepción, Chile

    2017 - 2018

  •   Post doctoral position Full Time

    UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

    Santiago, Chile

    2019 - 2020

  •   Assistant Professor Full Time

    UNIVERSIDAD DEL BIO-BIO

    Sciences

    Concepción, Chile

    2020 - At present

Experiencia Profesional

  •   Post-doct Full Time

    Universidad Técnica Federico Santa María

    Santiago, Chile

    2019 - 2020

  •   Assistant professor Full Time

    Universidad del Bío-Bío

    Concepción, Chile

    2020 - At present


 

Article (18)

A posteriori virtual element method for the acoustic vibration problem
A virtual element method for the elasticity problem allowing small edges.
An optimal control problem for the stationary Navier--Stokes equations with point sources.
Displacement-pseudostress formulation for the linear elasticity spectral problem
Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem
A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem
Mixed Methods for the Velocity-Pressure-Pseudostress Formulation of the Stokes Eigenvalue Problem
A posteriori error estimates in W1,p × Lp spaces for the Stokes system with Dirac measures
A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator
A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem
A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges
Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures
Symmetric and Nonsymmetric Discontinuous Galerkin Methods for a Pseudostress Formulation of the Stokes Spectral Problem
Mixed discontinuous Galerkin approximation of the elasticity eigenproblem
Acoustic vibration problem for dissipative fluids
Finite Element Analysis of a Bending Moment Formulation for the Vibration Problem of a Non-homogeneous Timoshenko Beam
Locking-free finite element method for a bending moment formulation of Timoshenko beams
Interior penalty discontinuous Galerkin methods for the velocity-pressure formulation of the Stokes spectral problem.
17
Felipe Lepe

Assistant Professor

Mathematics

Universidad del Bío-Bío

Concepción, Chile

7
Gonzalo Rivera

Académico

Ciencias Exactas

Universidad de Los Lagos

Osorno, Chile

5
David Mora

Associate Professor

Department of Mathematics

UNIVERSIDAD DEL BIO-BIO

CONCEPCION, Chile

3
Rodolfo Rodriguez

Full Professor

Ingeniería Matemática

UNIVERSIDAD DE CONCEPCION

Concepción, Chile