Man

Sergio Enrique Gutiérrez Cid

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

Santiago, Chile

Líneas de Investigación


Optimizacion Estructural; Homogeneizacion; Diseno Optimo

Educación

  •  Licenciado en Ciencias de la Ingenieria, Universidad de Chile. Chile, 1987
  •  Ingeniero Civil Matematico, Universidad de Chile. Chile, 1990
  •  PhD in Mathematical Sciences, Carnegie Mellon University. Estados Unidos, 1997

Experiencia Académica

  •   Profesor Asociado Jornada Completa

    Escuela de Ingenieria, Pontificia Universidad Catolica de Chile

    Santiago, Chile

    2009 - Not Available

  •   Profesor Asistente Jornada Completa

    Escuela de Ingenieria, Pontificia Universidad Catolica de Chile

    Santiago, Chile

    2005 - 2009

  •   Charge de Recherche CNRS Jornada Completa

    Ecole Polytechnique

    Palaiseau, Francia

    2004 - 2005

  •   Profesor Asistente Jornada Completa

    Facultad de Matematicas, Pontificia Universidad Catolica de Chile

    Santiago, Chile

    1997 - 2004


 

Article (17)

Shape optimization for a seepage problem with low contrast core
An Optimal Design Method Based on Small Amplitude Homogenization
A method based on non-steady heat diffusion problems for detecting the location of inclusions
A method based on small amplitude homogenization for detecting defects using elastic waves
Stress constrained compliance minimization by means of the small amplitude homogenization method
Optimal Strut-and-Tie Models Using Full Homogenization Optimization Method
Detection of weak defects in elastic bodies through small amplitude homogenization
An adaptive procedure for defect identification problems in elasticity
Elasto-plastic optimal profile of the flanges of a double-T steel beam
Small amplitude homogenization applied to inverse problems
An optimization algorithm applied to the Morrey conjecture in nonlinear elasticity
Optimal design in small amplitude homogenization
A Necessary condition for the quasicomvexity of polynomials of degree 4
A necessary condition for the Quasiconvexity of Polynomials of Degree Four
Laminations in planar anisotropic linear elasticity
Rank-three laminates are good approximants of the optimal microstructures for the diffusion problem in dimension two
Laminations in linearized elasticity: the isotropic non-very strongly elliptic case
17
Sergio Gutiérrez

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

Santiago, Chile

4
Joaquín Mura

Profesor

Ingeniería Mecánica

Universidad Técnica Federico Santa María

Santiago, Chile