Man

Gino Ignacio Montecinos Guzmán

Académico

Universidad de La Frontera

Temuco, Chile

Líneas de Investigación


Numerical methods for conservation laws; partial differential equations of hyperbolic type; inverse problems on conservation laws

Educación

  •  Doctor of philosophy in Environmental Engineering, UNIVERSITA DEGLI STUDI DI TRENTO. Italia, 2014
  •  Magister en ciancias de la ingeniería, mención modelación matemática , UNIVERSIDAD DE LA FRONTERA. Chile, 2009
  •  Licenciatura en ciencias de la ingeniería, UNIVERSIDAD DE LA FRONTERA. Chile, 2009
  •  Ingeniero Matemático, UNIVERSIDAD DE LA FRONTERA. Chile, 2009

Experiencia Académica

  •   Profesor Part Time

    UNIVERSIDAD DE CHILE

    Ciencias Físicas y Matemáticas

    Santiago, Chile

    2016 - At present

  •   Académico Full Time

    Universidad de Aysen

    Coyhaique, Chile

    2018 - At present

Experiencia Profesional

  •   Postdoc Full Time

    Center for Mathematical Modeling, Universidad de Chile

    Santiago, Chile

    2014 - 2016

  •   Researcher Full Time

    Laboratory of applied mathematics, University of Trento, Trento

    Trento, Italia

    2009 - 2010

  •   Researcher Part Time

    Department of Physics of La Frontera University, Temuco

    Temuco, Chile

    2007 - 2008

  •   Postodoctorado Fondecyt Full Time

    Center for mathematical modeling, Universidad de Chile

    Santiago, Chile

    2016 - At present


 

Article (32)

ENO-ET: a reconstruction scheme based on extended ENO stencil and truncated highest-order term
ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow
Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf
A universal centred high-order method based on implicit Taylor series expansion with fast second order evolution of spatial derivatives
AENO: a Novel Reconstruction Method in Conjunction with ADER Schemes for Hyperbolic Equations
An iterative scaling function procedure for solving scalar non-linear hyperbolic balance laws
An Optimized CPML Formulation for High Order FVTD Schemes for CED
A simplified Cauchy-Kowalewskaya procedure for the local implicit solution of generalized Riemann problems of hyperbolic balance laws
ADER Methods for Hyperbolic Equations with a Time-Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case
ADER Methods for Hyperbolic Equations with a Time‑Reconstruction Solver for the Generalized Riemann Problem: the Scalar Case
A numerical procedure and coupled system formulation for the adjoint approach in hyperbolic PDE-constrained optimization problems
An efficient, second order accurate, universal generalized Riemann problem solver based on the HLLI Riemann solver
Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - PartII, higher order FVTD schemes
A cell-centered polynomial basis for efficient Galerkin predictors in the context of ADER finite volume schemes. The one-dimensional case
A cell-centered polynomial basis for efficient Galerkin predictors in the context of ADER finite volume schemes. The one-dimensional case
Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data
Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - Part I, second-order FVTD schemes
A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws
A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws
A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws
An ADER-type scheme for a class of equations arising from the water-wave theory
Exploring various flux vector splittings for the magnetohydrodynamic system
Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes
Analytic solutions for the Burgers equation with source terms
Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws
Advection-diffusion-reaction equations: Hyperbolisation and high-order ADER discretizations
Computational Haemodynamics in Stenotic Internal Jugular Veins.
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes
Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms
Solver for the generalized Riemann problem for balance laws with stiff source terms: The scalar case.
Some Issues in Modelling Venous Haemodynamics

Proyecto (1)

INVERSE PROBLEMS FOR CONSERVATION LAWS AND DEVELOPMENTS IN THE CONTEXT OF CALCULUS OF VARIATIONS AND ADER SCHEMES
19
Gino Montecinos

Académico

Departamanto de Ingenieria Matematica

Universidad de La Frontera

Temuco, Chile

1
Rodrigo Lecaros

Profesor Instructor

Departamento de Matemática

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Santiago, Chile