Screen_shot_2020-01-20_at_12.00.07.png_thumb90

Tomas Patricio Barrios Faundez

Associate Professor

UNIVERSIDAD CATOLICA DE LA SANTISIMA CONCEPCION

Concepcion, Chile

Líneas de Investigación


Mathematical and numerical analysis of linear and nonlinear boundary value problems; Numerical Analysis; Computational Mechanics

Educación

  •  Numerical Analysis, UNIVERSIDAD DE CONCEPCION. Chile, 2006

Experiencia Académica

  •   PROFESOR ASOCIADO Full Time

    UNIVERSIDAD CATOLICA DE LA SANTISIMA CONCEPCION

    FACULTAD DE INGENIERIA

    CONCEPCION, Chile

    2005 - At present


 

Article (24)

On an adaptive stabilized mixed finite element method for the Oseen problem with mixed boundary conditions
A POSTERIORI ERROR ANALYSIS OF AN AUGMENTED DUAL-MIXED METHOD IN LINEAR ELASTICITY WITH MIXED BOUNDARY CONDITIONS
A stabilized mixed method applied to Stokes system with nonhomogeneous source terms: The stationary case Dedicated to Prof. R. Rodríguez, on the occasion of his 65th birthday
An a posteriori error analysis of a velocity-pseudostress formulation of the generalized Stokes problem
New a-posteriori error estimator for an stabilised mixed method applied to incompressible fluid flows.
Analysis of DG approximations for Stokes problem based on velocity-pseudostress formulation
Augmented mixed finite element method for the Oseen problem=> A priori and a posteriori error analyses
A note on a-priori error estimates for augmented mixed methods.
Adaptive numerical solution of a discontinuous Galerkin method for a Helmholtz problem in low-frequency regime.
A posteriori error analysis of an augmented mixed finite element method for Darcy flow
An a posteriori error estimator for a new stabilized formulation of the Brinkman problem
New a posteriori error estimator for an augmented mixed FEM in linear elasticity
New a posteriori error estimator for an augmented mixed FEM in linear elasticity
An a posteriori error estimator for a new stabilized formulation of the Brinkman problem
Low cost A posteriori error estimators for an augmented mixed FEM in linear elasticity.
An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow
On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: A priori error estimates
A posteriori error analysis of an augmented mixed formulation in linear elasticity with mixed and Dirichlet boundary conditions
A priori and a posteriori error analyses of an augmented discontinuous Galerkin formulation
A priori and a posteriori error analysis of a wavelet based stabilization for the mixed finite element method
An augmented mixed finite element method with Lagrange multipliers: A priori and a posteriori error analyses
A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
A posteriori error estimates for a mixed-FEM formulation of a non-linear elliptic problem

ConferencePaper (1)

A posteriori error estimation of a stabilized mixed finite element method for Darcy flow

Proyecto (4)

CIRCUMVENTING THE INF SUP CONDITION VIA STABILISATION TECHNIQUES=> A PRIORI AND A POSTERIORI ERROR ANALYSES
FURTHER APPLICATIONS OF STABILIZED DG AND HDG METHODS TO LINEAR AND NONLINEAR STEADY PROBLEMS IN CONTINUUM MECHANICS
NEW DEVELOPMENTS OF AUGMENTED DISCONTINUOUS GALERKIN METHODS FOR BOUNDARY VALUE PROBLEMS IN CONTINUUM MECHANICS
A-PRIORI AND A-POSTERIORI ERROR ANALYSES OF STABILIZED MIXED FINITE ELEMENT METHODS IN ELASTICITY AND FLUID MECHANICS
10
Tomas Barrios

Associate Professor

Department of Applied Mathematics and Physics

UNIVERSIDAD CATOLICA DE LA SANTISIMA CONCEPCION

Concepcion, Chile

3
Rommel Bustinza

Associate Professor

Departamento de Ingenieria Matematica

UNIVERSIDAD DE CONCEPCION

Concepcion, Chile

1
Erwin Hernandez

Profesor Titular

Departamento de Matemática

Universidad Tecnica Federico Santa María

Valparaíso, Chile

1
Galina Garcia

Académica

Matemática y CC

UNIVERSIDAD DE SANTIAGO, FACULTAD DE CIENCIAS, DEPTO. MATEMÁTICA Y CC.

Santiago, Chile