Me1.png_thumb90

Nicolás Rivera Aburto

Investigador

Universidad de Valparaíso

Valparaíso, Chile

Líneas de Investigación


Design and Analysis of Randomised Algorithms, Markov Chains and its applications in Computer Science.

Educación

  •  PhD in Theoretical Computer Science, KINGS COLLEGE LONDON. Reino Unido, 2018
  •  Computer Science, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE. Chile, 2013
  •  Mathematics, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE. Chile, 2011

Experiencia Académica

  •   Research Associate Full Time

    UNIVERSITY OF CAMBRIDGE

    Cambridge, Reino Unido

    2017 - 2021

  •   Investigador Full Time

    UNIVERSIDAD DE VALPARAISO

    Ingeniería

    Valparaíso, Chile

    2021 - At present

Formación de Capital Humano


Supervision Tesis de Pregrado:

Jae Hee Lee - Reinforcement Learning Methods for Klondike Solitaire. University of Cambridge.


Difusión y Transferencia


Organiser of The Third King’s Workshop on Random Graphs and Random Processes. April 2019.


Premios y Distinciones

  •   Best student paper award

    Symposium on Combinatorial Search

    Estados Unidos, 2013

    Best Student Paper Award por el paper "Reconnecting with the Ideal Tree: An Alternative to Heuristic Learning in Real-Time Search"

  •   Distinguished Paper Award

    Association for the Advancement of Artificial Intelligence

    Chile, 2022

    Distinguished Paper Award por el paper "Subset approximation of Pareto Regions with Bi-objective A*"


 

Article (19)

A General Framework for the Analysis of Kernel-based Tests
Rumors with changing credibility
Distributed Averaging in Opinion Dynamics
Multiple random walks on graphs: mixing few to cover many
Diversity, Fairness, and Sustainability in Population Protocols
A reproducing kernel Hilbert space log-rank test for the two-sample problem
Kaplan-Meier V- and U-statistics
The 2^k Neighborhoods for Grid Path Planning
Best-of-Three Voting on Dense Graphs
New Cover Time Bounds for the Coalescing-Branching Random Walk on Graphs
The Dispersion Time of RandomWalks on Finite Graphs
DISCORDANT VOTING PROCESSES ON FINITE GRAPHS
Dispersion processes
Threshold behaviour of discordant voting on the complete graph
Improved Cover Time Bounds for the Coalescing-Branching Random Walk on Graphs
The Coalescing-Branching Random Walk on Expanders and the Dual Epidemic Process
Fast Consensus for Voting on General Expander Graphs
Incorporating weights into real-time heuristic search
Reconnection with the Ideal Tree: A New Approach to Real-Time Search

ConferencePaper (12)

Subset Approximation of Pareto Regions with Bi-objective A*
Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data
A Suboptimality Bound for 2k Grid Path Planning
Fast Plurality Consensus in Regular Expanders
Grid Pathfinding on the 2k Neighborhoods
Multi-Agent Flag Coordination Games
Gaussian processes for survival analysis
The Linear Voting Model
Coalescing Walks on Rotor-Router Systems
Real-Time Pathfinding in Unknown Terrain via Reconnection with an Ideal Tree
Reconnecting with the ideal tree: An alternative to heuristic learning in real-time search
Weighted real-time heuristic search

Proyecto (2)

ALGORITHMS AND DYNAMICS ON LARGE NETWORKS
Voting Models on Graphs
33
Nicolás Rivera

Investigador

Instituto de Ingeniería Matemática

Universidad de Valparaíso

Valparaíso, Chile

3
Jorge Baier

Profesor Asociado

Departamento de Ciencia de la Computación

Pontificia Universidad Católica de Chile

Santiago, Chile

2
Carlos Hernández

Profesor Titular

Universidad San Sebastián

Santiago, Chile

2
Tamara Fernandez

Profesor Asistente

Facultad de Ingeniería y Ciencias

Universidad Adolfo Ibánez

Viña del Mar, Chile