Usach_2018b.jpg_thumb90

Carlos Felipe Guzmán Inostroza

Profesor Asistente

Universidad de Santiago de Chile

Santiago, Chile

Líneas de Investigación


Simulación multiescala de materiales (madera, hormigón) Modelización en elementos finitos de plasticidad y daño dúctil en metales. Formulaciones mixtas en elementos finitos para mecánica de sólidos.

Educación

  •  Sciences de l'ingénieur, UNIVERSITE DE LIEGE. Bélgica, 2016
  •  Ciencias de la Ingeniería mención Ingeniería Mecánica, UNIVERSIDAD DE CONCEPCION. Chile, 2012
  •  Ingeniero Mecánico, UNIVERSIDAD DE CONCEPCION. Chile, 2011

Experiencia Académica

  •   Postdoctoral Researcher Full Time

    UNIVERSIDAD DE SANTIAGO DE CHILE

    Ingeniería

    Santiago, Chile

    2016 - 2019

  •   Phd Researcher Full Time

    UNIVERSITE DE LIEGE

    Faculté des Sciences Appliquées

    Lieja, Bélgica

    2011 - 2015

  •   Profesor Asistente Full Time

    UNIVERSIDAD DE SANTIAGO DE CHILE

    Ingeniería

    Santiago, Chile

    2019 - A la fecha

  •   Visiting researcher Full Time

    International center for numerical methods in engineering

    Barcelona, España

    2020 - 2020

Experiencia Profesional

  •   Alumno en práctica Full Time

    Empresa nacional del petróleo, ENAP

    Concepción, Chile

    2009 - 2009

Formación de Capital Humano


Project name: Damage Prediction in Incremental Forming - F.R.F.C. 2.4601.11F
Project Director: Dr. Anne Marie Habraken (University of Liège, Belgium)
Project partners: Prof. Joost Duflou (KULeuven, Belgium), Jacqueline Lecomte-Beckers (University of Liège, Belgium), Ricardo Alves de Sousa (University of Aveiro, Portugal)
Project description: Single point incremental forming (SPIF) is a process where a clamped sheet metal is deformed by using a relatively small tool without the need of a die. SPIF has several advantages over traditional forming, such as the high formability attainable by the material. The goal of this research is to predict damage and fracture for the SPIF process using the finite element (FE) method. An extended Gurson-type of damage model is implemented in the LAGAMINE FE code through a fully-implicit integration scheme. The material model parameters are identified based on a specific methodology involving macroscopic and microscopic measurements, using techniques such as digital image correlation and microscopic image analysis. The finite element simulations are performed using a newly developed solid-shell element formulation, specific for shell-type structures. The simulations are compared with experimental measurements for SPIF standard tests.



 

Article (16)

Multiscale modeling of the elastic moduli of CNT-reinforced polymers and fitting of efficiency parameters for the use of the extended rule-of-mixtures
Multiscale modeling of the thermal conductivity of wood and its application to cross-laminated timber
Novel experimental method to determine the limit strain by means of thickness variation
Prediction of cracks within cones processed by single point incremental forming
Prediction of longitudinal shear resistance of steel-concrete composite slabs
Damage characterization in a ferritic steel sheet: Experimental tests, parameter identification and numerical modeling
Damage prediction in single point incremental forming using an extended Gurson model
Probabilistic sensitivity analysis to understand the influence of micromechanical properties of wood on its macroscopic response
Modeling the ductile fracture and the plastic anisotropy of DC01 steel at room temperature and low strain rates
Simulation of a two-slope pyramid made by SPIF using an adaptive remeshing method with solid-shell finite element
Assessment of Damage and Anisotropic Plasticity Models to Predict Ti-6Al-4V Behavior
Numerical Simulation of a Conical Shape Made By Single Point Incremental
Numerical simulation of a pyramid steel sheet formed by single point incremental forming using solid-shell finite elements
Towards fracture prediction in single point incremental forming
Evaluation of the Enhanced Assumed Strain and Assumed Natural Strain in the SSH3D and RESS3 Solid Shell Elements for Single Point Incremental Forming Simulation
Study of the geometrical inaccuracy on a SPIF two-slope pyramid by finite element simulations

ConferencePaper (2)

FINITE ELEMENT APPROACH TO SIMULATE CNT-REINFORCED CALCIUM-SILICATE-HYDRATE (C-S-H) COMPOSITE
Multi-Scale Structural Mechanics for the Modelling of Cross-Laminated Timber Buildings

Proyecto (1)

Damage Prediction in Incremental Forming
19
Carlos Guzmán

Profesor Asistente

Ingeniería en Obras Civiles

Universidad de Santiago de Chile

Santiago, Chile

4
Juan Pina

Profesor Asistente

Ingeniería en Obras Civiles

Universidad de Santiago de Chile

Santiago, Chile

3
Sergio Yanez

Profesor Asistente

Ingeniería en Obras Civiles

Universidad de Santiago de Chile

Santiago, Chile

1
Felipe Castro

Académico

Metalurgia

Universidad de Santiago de Chile

Santiago, Chile

1
Víctor Tuninetti

Profesor asistente

Facultad de Ingeniería y Ciencias

Universidad de La Frontera

Temuco, Chile

1
SIVA AVUDAIAPPAN

Adjunct Professor

Civil Engineering

Universidad de la Santiago de Chile

Santiago, Chile

1
Paulo Flores

Profesor asociado

Ingeniería Mecánica

University of Concepcion

Concepcion, Chile