Man

Maria Del Carmen Cortazar Sanz

Profesor

U. CATOLICA DE CHILE, FACULTAD DE MATEMATICA

Santiago, Chile

Líneas de Investigación


Partial Differential Equations; Non-linear equations; Non-local equations; Ecuaciones de Difusión; Ecuaciones elípticas

Educación

  •  Matematicas, New York University. Estados Unidos, 1978

Experiencia Académica

  •   Profesor Titular Full Time

    P. Universidad Católica de Chile

    Matematicas

    Santiago, Chile

    1972 - 2013

  •   Profesor titular Part Time

    PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

    Matematicas

    Santiago, Chile

    2014 - At present


 

Article (19)

Analysis of an elliptic system with infinitely many solutions
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
An inhomogeneous nonlocal diffusion problem with unbounded steps
Asymptotic behavior for a nonlocal diffusion equation in exterior domains: The critical two-dimensional case
ASYMPTOTIC BEHAVIOR FOR A ONE-DIMENSIONAL NONLOCAL DIFFUSION EQUATION IN EXTERIOR DOMAINS
Nonnegative solutions of semilinear elliptic equations in half-spaces
ASYMPTOTIC BEHAVIOR FOR A NONLOCAL DIFFUSION EQUATION ON THE HALF LINE
FINITE MASS SOLUTIONS FOR A NONLOCAL INHOMOGENEOUS DISPERSAL EQUATION
Multiplicity results for sign changing bound state solutions of a semilinear equation
On the Uniqueness of the Limit for an Asymptotically Autonomous Semilinear Equation on DOUBLE-STRUCK CAPITAL R- N
Existence of sign changing solutions for an equation with a weighted p-Laplace operator
On the existence of sign changing bound state solutions of a quasilinear equation
Asymptotic Behavior for a Nonlocal Diffusion Equation in Domains with Holes
On the uniqueness of sign changing bound state solutions of a semilinear equation
Stationary Sign Changing Solutions for an Inhomogeneous Nonlocal Problem
EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS
Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions
On the uniqueness of the second bound state solution of a semilinear equation
How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems

Proyecto (2)

On non-local and classical diffusion
On some elliptic and parabolic problems
21
Maria Del Carmen Cortazar

Profesor

Matematicas

U. CATOLICA DE CHILE, FACULTAD DE MATEMATICA

Santiago, Chile

6
MARTA GARCIA-HUIDOBRO

Profesora Titular

Matemáticas

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SANTIAGO, Chile

4
Salome Martinez

Profesora Titular U. de Chile, Directora del Laboratorio de Educación Matemática del Centro de Modelamiento Matemático

Center for Mathematical Modeling

Universidad de Chile

Santiago, Chile

2
Pilar Herreros

P. UNIVERSIDAD CATÓLICA DE CHILE, FACULTAD DE MATEMÁTICA

Santiago, Chile

1
Raul Manasevich

Profesor Titular

Departamento de Ingeniería Matematica y Centro de Modelamiento Matemático

Universidad de Chile

Santiago, Chile